3.0 LONG-PERIOD MOTION OF THE ORBIT PLANE OF A NATURAL SATELLITE

The orbital motion of most major natural satellites in the Solar System
is characterised by small perturbations from two or more sources. These

may be listed :

° The gravitational attraction of other satellites orbiting the same

primary

e The gravitational attraction of the Sun

N The oblateness of the primary, which causes the gravitational po-
tential field of the primary to differ from the simple R = -GM/r of

a spherically symmetric body or point mass

The relative magnitudes of these effects depends in part upon the
orbital distance of the satellite relative to the radius of the primary
and to the orbital distance of the Sun. A satellite orbiting within a few
planetary radii will be strongly affected by the oblateness of the pri-
mary ; conversely, a satellite in a large orbit, whose period is of the
order of a year or more, will suffer significant solar perturbations. In
either case, the motion of the satellite may also be disturbed by the

presence of another massive satellite in a nearby orbit.
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The secular motion of the orbit plane is of interest because it is
rather sensitive to the relative sizes of the various perturbing effects.
In this section we consider the secular motion of the orbit plane of a
satellite which is subject to perturbations of similar magnitude from two
or more sources. As an example, we consider the case of Iapetus, the ninth
satellite of Saturn, which is perturbed principally by Titan and the Sun.

Oblateness perturbations upon Iapetus are smaller but are not negligible.

3.1 THE DISTURBING FUNCTION

We present below the terms from the disturbing function which contain only
the node and inclination of the satellite and the perturbing object (or
the equator plane of the primary in the case of oblateness perturbations).
Terms are given to fourth order in the sine of the inclinations and they
are with respect to an arbitrary fixed reference plane. As can be seen,

the three disturbing functions are very similar in form.

Solar disturbing function

RS<2> = -nzazxS {sin?I + sinZIS

-2 sin T cos I sin I cos I cos(R - Q) }
s s s

R ¢4 = —nzazxs {-% sin?I sinZIS cos 2(Q - QS)

- 3/2 sin?I Sinzls }
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Oblateness disturbing

Re(Z) - -n

R (hY — -n

function
2a?x  {sin?I + sin?I
e e

-2 sin T cos I sin I cos I cos(R - &) }
e e e

2.2 1 o2 .2 _
a Xe {-% sin®I sin Ie cos 2(% Qe)

- 3/2 sin?I sinZIe }

Satellite disturbing functiomn

Rt<z> - -n

2,2 - - -
a Xt {3 cos I cos It cos I cos It

-2 sin I sin It cos(Q - Qt) }

cay - 2,2 - - - 9 -
Rt n*a®x, {-2 (1 cos I) (1 cos It) cos 2(8 Rt) }
Where I = Inclination of the satellite orbit to the reference
plane
Q = Longitude of the node of the satellite orbit upon
the reference plane
R¢2? = first-order part of the disturbing function
R¢®? = second-order part of the disturbing function
_ N 3
X (3/8) ug (a/a )
- 2
X, (3/4) 3, (a /)
= <1
X, (1/8) u, abij
and
M = mass of the primary
a = semi-major axis of the satellite orbit
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mean motion of the satellite
dynamical form factor of the primary

the mass ratio of the disturbing body to the

primary

the ratio of the semi-major axis of the disturbing
satellite to the disturbed satellite, and a
Laplace coefficient.

Node and inclination of the orbit of the

disturbing satellite on the reference plane
equatorial radius of the primary

Node and inclination of the equator plane

of the primary on the reference plane

semi-major axis of the orbit of the Sun around

the primary

Node and inclination of the orbit of the

Sun on the reference plane.

The perturbation in the node and inclination may be found from the La-

grange planetary equations. We need only retain the terms involving par-

tial derivatives of R with respect to R and i since the other osculating

elements of the satellite do not appear in the disturbing functions as

given in [1], [2], Thus

[4] dQ = 3R
It naZ sin i di

[5] di = - 3R.

— ——————
dt in i 3%

na
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3.2 FIRST-ORDER THEORY FOR TWO DISTURBING FORCES

If there are only two perturbing effects and we neglect powers of sine
inclination above the second, then the disturbing function is of the

following form.

- 2.2 2 .7 2 _ -
[6] R n*a® x; {1% + 19 21 Il cos (R Ql)}

2.2 2 2 -
n*a® X, {1% + I2 2 I I2 cos (R Qz)}

Consider the perturbation in the inclination.

[7] dI/dt = 2n { Xy I, sin (Q - Ql) + X, I, sin (Q - 92) }

1 2 72

We may choose the reference plane so that it passes through the points
of intersection of the orbit planes of the disturbing bodies (or the
equator plane of the primary if oblateness is one of the disturbing ef-

fects).
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Plane 1

Laplacian

Plane

ascending Plane 2

N is the node of Plane
descending

Figure 5. Laplacian plane

Then

(8]

and hence

sin (R - QZ) z - sin (Q - Ql)

and we may write

[10]

dI/dt = 2n (Xl I1 - X2 12) sin (R - Ql).
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Clearly we may make dI/dt vanish if

[11] X, I. -x, I, = 0.

This means that the inclination of the orbit of the satellite remains
constant upon the plane defined in the figure. The plane is called the
Laplacian plane of the satellite and it lies between the orbit planes of
the disturbing bodies. Its inclination with respect to either of these
planes depends upon the relative sizes of the disturbing forces, and may

be found be solving [11] in conjunction with

e

where I is the mutual inclination of the orbit planes of the disturbing

bodies.

If n, and n, are the unit normal vectors to the orbit planes 1 and 2 re-

1 2

spectively then the unit normal to the Laplacian plane is given by

Lo

n, = (sin 12/51n I) n, + (sin I1/51n I) n,

We may determine the motion of the node upon the Laplacian plane using

[4].
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[14] dQ/dt =K = - 2n ()(1 + Xz)

That is to say, the orbit precesses uniformly in a retrograde direc-

tion upon the Laplacian plane.

Let the node and inclination of the Laplacian plane upon a fixed ec-

liptic and equinox of epoch be QL’ IL and suppose the orbit of the sat-

ellite to be inclined at a constant angle I' to the Laplacian plane.

Moreover, denote by Y the arc of the Laplacian plane from its ascending

node upon the ecliptic to the ascending node of the satellite orbit upon

it, as in the accompanying figure.

Orbit of satellite

Laplacian
piane

Ecliptic

Figure 6. The Laplacian plane and the satellite orbit
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Then the mnode and inclination of the satellite upon the ecliptic and

equinox are given by

sin (Q - QL) sin I = sin I' sin ¥
[15] cos (Q - QL) sin I = cos I' sin I, + sin I' cos I, cos ¥
cos I = cos I' cos I, - sin I' sin I, cos ¥
where
Y=Y -kt
o

Example : Tapetus

The principal perturbing forces upon Iapetus are due to the Sun and
Titan. The action of oblateness and the other inner satellites is small
and is included in the disturbing function due to Titan : the equator
plane of Saturn is assumed to be identical to the orbit plane of Titan.

We may write

>
I

(3/8) wg (a/a )?

>
Il

(1/8) w, obfl’ + (3/4) J, (a_/a)® + (1/8) }:uiaib%;>(ai)
¢
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and we adopt the following values for the parameters of the orbit of

Iapetus, the Sun and Titan, and of

ecliptic and equinox of 1950.

Q= 113°.158
Q= 168°.747
u, = 3499.4

W, = 2.383 1074

3/2 3, = 0.024311

n = 4°.53795711 per day

~le
"

Hence I = 26°.445
X =2.037 107>
S
_5 -
X, = 1.330 10 ° + 0.345 10

of Saturn, referred to the mean

I = 2°.4909

= 27°.779

—
|

a/aS = 0.0024948

a = at/a = 0.34314

a_/a = 0.016853

5

+0.011 10> = 1.686 10>
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where the contribution of the oblateness and the other inner satellites
to X have been given explicitly (the second and third terms respectively)

to show their relative sizes.

The inclination of the orbits of the Sun and Titan to the ‘Laplacian plane

may be determined to be

5
<

I =1 xt/(xS + xt)

11°.933

1l
—
o~

o]

I =1 xs/(xS + xt) .512.

The normal to the Laplacian plane is given by

= +
o, = Fg on v F 4
where FS = sin It/31n I
Ft = sin IS/51n I

The components of n, are thus (0.06471065, 0.22184702, 0.97293132) and

hence the position of the pole of the Laplacian plane is
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163°.738

e}
Il

= 13°.3614

i
|

and the rate of motion of the orbit of Iapetus on its Laplacian plane is

k = -11°.3478 per Julian century.

We may determine the position of the orbit of Iapetus upon its Laplacian
plane by comparison with mean elements given by Struve (1933) and Sinclair
(1974). The mean node and inclination at several epochs are presented
in the table below, referred to the mean ecliptic and equinox of 1950.
The values obtained directly from observations include long period per-
turbations due to the Sun. These terms must be subtracted in order to
determine the underlying secular variations of the node and inclinationm.
Struve subtracted one Solar term in forming his mean points but the theory
of the Solar perturbations upon Iapetus has been revised by Sinclair
(1974) and by Harper et al (in submission). The points from Struve have
been corrected by subtraction of the periodic perturbations given by
Sinclair (1974) and Harper et al (in submission) ; the point from Sinclair
(1974) has been corrected by subtracting the periodic perturbation in

Harper et al.
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Date Node Inclination
1787.70 146°.50627 19°.26139
1832.50 145°.05501 18°.85991
1857.50 144°.32894 18°.70378
1876.70 143°.39184 18°.54219
1880.20 143°.35909 18°.54550
1885.60 143°.10195 18°.46443
1917.20 141°.96303 18°.15884
1918.20 141°.91871 18°.15050
1926.40 141°.55608 18°.06129
1927.40 141°.57161 18°.05516
1973.00 139°.89829 - 17°.56719

We solve for  and I in equations [15] and for B The values

are

Q = 143°.084 = 0°.040 at the epoch 1885.25

I = 18°.449 + 0°.013

L. = (2.333 % 0.063)x10'4.

The residuals sin 1 AR and A1 are given in the following table.
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Date sin 1 AQ A1
1787.70 -0°.0997 -0°.0139
1832.50 -0°.0096 -0°.0576
1857.50 +0°.0611 +0°.0003
1876.70 -0°.0089 +0°.0100
1880.20 +0°.0220 +0°.0452
1885.60 +0°.0039 +0°.0136
1917.20 +0°.0102 +0°.0071
1918.20 +0°.0077 +0°.0085
1926.40 -0°.0128 -0°.0004
1927.40 +0°.0032 +0°.0033
1973.00 -0°.0134 -0°.0192

Root-mean-square 0°.0368 0°.0240

Inclination of the orbit of Iapetus to its Laplacian plane = 7° 33'.0

3.3 FIRST-ORDER THEORY WITH MORE THAN TWO DISTURBING FORCES

When there are more than two significant disturbing forces, the formu-
lation of the previous section is less tractable. Equation [7] has three

or more terms on the right-hand side and cannot be readily transformed
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into the form of equation [10]. We elect to use a different approach by

introducing new variables p and q defined by

sin I sin Q

go]
1l

[16]

sin I cos Q.

0
I

Lagrange's planetary equations now become

I
14

na? dp/dt + cos I 3R/3q + 3R/3q

14

na? dq/dt - cos I 3R/3p - 3R/3p.

This form of the equations was used by Tisserand (1892). We use the ap-
proximate forms, assuming cos I = 1.
The first-order disturbing functions RS(Z), Rt(z’, Re<2) may each be
written in the form

<2y — _.2.2 2 4 42 - - + 2 g 2y
[18] R, n?a® x, {p q 20.p - 2B.q + o B.%}
The total disturbing function due to N perturbing forces may be written

[19] R = -n?a®’K {p? + q® - 2Ap - 2Bq + C}

where

Long-period motion of the orbit plane of a Natural Satellite 61



=
Il
>

¢

>
Il

C X xe;)/K

¢

B= (X xB)/K

e

C=(Xx (ai2 + Biz) )/K.
¢

Tisserand (1892) showed that the disturbing function has the following

property when restricted to the secular terms described in this work.

That is to say

[22] R = constant
hence
[23] p? + q* - 2Ap - 2Bq + C = constant.

This is the equation of a circle
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[24] (P -p )+ (q - qo)2 = r?

where

define the centre of the circle in the pg-plane. Referring back to the
previous section, it is evident that (po, qo) is the position of the pole
of the Laplacian plane of the orbit. The orbit maintains a constant in-
clination to the Laplacian plane given by r = sin I where r? is the con-
stant right-hand side of equation [24]. If QL’ IL denote the node and

inclination of the Laplacian plane in the fixed reference system then

o
I

° sin IL sin QL

Q
I

o sin IL cos QL.

We may regard P 9, s the coordinates of the 'centroid' or 'weighted
mean' of the coordinates of the poles of the disturbing forces. The
'weight' of each pole (ai, B.) is the dimensionless coefficient Xy in

equation [18].

If we choose the coordinate system so that the reference plane is the

Laplacian plane then I. = 0 and hence p = g = 0. We then have
P o

L o)
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—
o]
Il

-n*a? K (p®> + q> + C")

= -n%2a? K U.

Applying equations [17] we have

dp/dt

- nK 3U/3qg -2n K ¢q

[28]

dg/dt + nK 3U/3p +2n K p.

The solution to these equations may be written

p = r sin (kt - ¢)
[29]

g = r cos (kt - ¢)
where
[30] k = =-2n K

and r, ¢ are to be determined from observations. ¢ is the node of the orbit

plane upon the Laplacian plane at time t = 0 and r is as in equation [24].
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The rate of precession of the orbit upon the Laplacian plane is 2K times

the mean motion of the satellite - cf. equation [14].
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3.4 SECOND-ORDER THEORY WITH AN ARBITRARY NUMBER OF DISTURBING FORCES

We now consider the disturbing functions [1], [2], [3] up to fourth order
in the inclinations, i.e. including terms such as Rs‘“’, Rt(“), Re(“).

Using the notation of the previous section together with

D=( Tx e B)/K

(
—_ - 2 2 '
[31] =0 Yx k (e +6.7) )X
(B
= 1 2 _ 2
€ 7 ( cEXi (Bl Oii))/K
we have
[32] R=-n%a% {(1 - ¥ +e)p?+ (1 -7 -¢e)g® - 24p - 2Bq
-2Dpgq + C}.
This differs from equation [19] in two respects : (i) the coefficients

of p? and g? are no longer equal, and (ii) there is now a second-order
cross term in pq. Equations [22] and [32] imply that the pole of the orbit
follows an ellipse. The centre of the ellipse (po, qo) may be found by
substituting p = P, + x, q= d, + vy into [32] and making the resulting

coefficients of x and y equal to zero. We find

(BD + A(1 - ¥ - &))/T2

o]
1l

(AD + B(1 - ¥ + ¢£))/T?

Q
I
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where

I'2=(1-1%2% -¢2 - D2,

This is the pole of the Laplacian plane of the orbit - cf. equatiomn 25.

The disturbing function becomes

[34] R=-n%a%k{ (1 - ¥ -&e)x> + (1 - ¥+ ¢e)y? - 2Dxy + G}

where G is & new constant. Then

dp/dt = dx/dt

Il
1

2nK { (1 - ¥ + &)y - Dx}

[35]

dq/dt = dy/dt =+ 2nK { (1 - ¥ - g¢)x - Dy}.

These equations admit the general solution
X =x cos kKt + x sin kt
c S
[36]

= + 1
v yc cos Kt ys sin Kkt

where the rate of precession k is given by

[37] Kk = - 2nk T.
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The four coefficients X.» Yo X, ¥ are not independent. If we choose

X5 V. to be arbitrary constants determined from observations then X

»
1l

{(+Dx_- (1-7%- ey /T

[38]

g
]

{- DyC - (1 -7+ E)Xc}/T.

Example : Iapetus

We may refine the theory of the motion of the orbit plane of Iapetus
by re-calculating the rate of precession XA and the position of the pole
of the Laplacian plane. Using the previous position of the Laplacian plane
as a reference plane we may define a triad of orthonormal vectors N, M,
W such that N is in the line of intersection of the Laplacian plane with
the ecliptic, at the ascending node; M is in the Laplacian plane 90° from

N and W is normal to the Laplacian plane.

Let QLD, ILu be the node and inclination of the Laplacian plane ob-
tained in the previous section and now to be used as a first approxi-

mation. Then
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L as 0 0

sin QL cos IL

0 — 0 o

ML + cos QL cos IL
+ sin I.°

/+ sin Q.° sin I.°

L L

0 — s 0 0

W o o= cos QL sin I
+ cos ILD

Let Qi, Ii be the node and inclination of the orbit of the disturbing body
referred to the ecliptic and equinox of 1950 and n, be the unit normal

to that plane. Then

We tabulate below the values of a«, B and X for the Sun, Titan and the
oblateness of Saturn. We adopt the following parameters (cf. previous

example.)

2
Il

Sun : 113°.158 IS = 2°.4909

2.03726 10>

>
I
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Oblatemess : Q= 168°.710 I, = 28°.1410
X, = 0.34525 1072
Titan : Q= 168°.747 I = 27°.7790
X /M, = 0.0558215
_ -4 -5
W, = 2.3829 10 X, = 1.33017 10

Mean motion of Iapetus = 4°.53795711 per day

First-order position of the Laplacian plane :

o — o 0 — °

QL 163%.723 IL 13%.3670
Body o B xx10°
Sun -0.033491 +0.199849 2.0373
Titan +0.042086 -0.251164 1.3217
Oblateness +0.042287 | -0.257276 0.3452

We obtain the following results upon fitting to the data.

Rate of precession of the orbit upon the Laplacian plane :

k = - 12°.2793 per Julian century

(cf. -11°.3478 in the first-order theory)
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Position of the pole of the Laplacian plane :

p, = +0.0005837

q, = -0.0039601
- o

Q. = 163°.711
—_ o

I, = 13°.3497

Solution of the equations for p and q :

P =P, -0.111288 cos kt +0.068650 sin kt

q = qo -0.069426 cos kt -0.114809 sin kt

We may deduce the maximum and minimum values of the inclination of the

orbit of Iapetus to the Laplacian plane :

7° 43'.0

maximum

7° 30'.5

minimum

The range of inclination is thus 7° 36'.8 % 6'.3

(cf. 7° 33'.0 in the first-order case)

The residuals sin 1 AR and A1 are given in the following table.

Long-period motion of the orbit plane of a Natural Satellite 71



Date sin 1 AQ A1
1787.70 -0°.1627 -0°.0435
1832.50 -0°.0456 -0°.0744
1857.50 +0°.0406 -0°.0084
1876.70 -0°.0176 +0°.0078
1880.20 +0°.0155 +0°.0441
1885.60 +0°.0008 +0°.0145
1917.20 +0°.0270 +0°.0194
1918.20 +0°.0252 +0°.0212
1926.40 +0°.0100 +0°.0154
1927.40 +0°.0266 +0°.0195
1973.00 -0°.0391 -0°.0152

Root-mean-square 0°.0560 0°.0322

The wvalues of the

node and inclination of the orbit of Iapetus at the

epoch 1885.25 and the mass of Titan are found to be :

Q = 143°.093 + 0°.045

I = 18°.448 + 0°.014

M

= (2.252 + 0.067)x10

4
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3.5 DISCUSSION OF RESULTS : DETERMINATION OF THE MASS OF TITAN

Previous authors have used the motion of the orbit plane of Iapetus to
determine the mass of Titan. As we have shown, the rate of precession of
the orbit plane upon its Laplacian plane is directly dependent upon the
mass of Titan (cf. equations [14], [30], [37] and the expansions for Xs’
Xe’ Xt given after equation [3]).

We give below a table of values from Jeffreys (1953), Sinclair (1574) and
this work, plus the values obtained by Sinclair and Taylor (1985) from
an analysis of the orbits of Titan, Hyperion and Iapetus by numerical
integration, by Tyler et al (1981) from analysis of Voyager 1 radio-
tracking data and by Message from the motion of Hyperion where value (a)
is a weighted mean of values obtained from individual terms in the theory

of Hyperion and value (b) is a least-squares solution.

Source uTXIO“
Jeffreys 2.412 + 0.018
Jeffreys (from Iapetus) 2.357 + 0.052
Sinclair 2.422 + 0.031
1St-order Laplacian plane 2.333 + 0.063
2"% order Laplacian plane 2.252 % 0.067
Sinclair and Taylor 2.36777 £ 0.00055
Tyler et al 2.3664 £ 0.0008
Message (a) 2.3648 £ 0.0055
Message (b) 2.3677 X 0.0004
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These values may be visualised in the following figure.

He— Jeffreys
———— Jeffreys (Iapetus)
H—— Sinclair

¢
p

Laplacian plane 1

® - Laplacian plane 2
° Sinclair & Taylor
© Tyler et al
o Message (a)
° Message (b)
2.2 2.3 2.4 2.5
Mass x 10°

Figure 7. Determination of the mass of Titan

The values of M obtained here are consistent with those obtained by
other authors, notably Sinclair and Taylor, Tyler et al and Jeffreys'
determination from the motion of the orbit plane of Iapetus. The value
from the first-order theory is in better agreement with other values than
that from the second-order theory. In addition, the first-order theory
gives a better fit to the data since its root-mean-square residuals in

sin 1 AQ and A1 are smaller by some 30% than those from the second-order
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theory. We are probably justified, therefore, in preferring the value of
U from the first-order theory as the more reliable.

The main difference between the two theories, particularly when fit-
ting to data over a period of two centuries, lies in the precession rate
k. The second-order theory has a rate some 8% larger than the first-order
theory due to the factor I' and we may expect the two models to diverge
over long periods of time. The difference amounts to 0°.931 per Julian
century or 1°.73 over the span of the data. This will not be manifested
in the calculated values of the node and inclination however, since the
parameters of the model will change to accohmodate different precession
rates as part of the least-squares fitting process. It may be that the
mass of Titan from the second-order theory is low because the fitting
process tried to reduce the precession rate : the precession rate implied
(in the second-order expression for k) by a value of Mp = 2.35 10_4 (say)
may in fact be too large than the rate represented by the observed values
of node and inclination. However, the data only covers 200 years of a 3000
year precession and the rate is not well-determined anyway, as the large
standard error of U attests. The mass of Titan may be obtained more ac-

curately by other means.

It is important to note that the fourth-order terms in the disturbing
functions given at the start of this chapter do not contain the fourth
power of the inclination of the satellite. They are fourth-order only in
the sense that the powers of the various inclinations in each term sum
to 4. This allows us to retain the more tractable form of the equations

for dp/dt and dq/dt. Inclusion of the fourth power of the satellite's
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inclination would introduce terms in p® and g°® into the expressions for
dg/dt and dp/dt respectively. In the case of mutual satellite terms we
would also need to expand the planetary disturbing function to include

terms whose Laplace coefficients have fractional subscript 3/2.
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